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ABSTRACT

The singular integral equation technique is used to derive the secular equation for an elevated shielded
stripline. The dispersion characteristic of the quasi-TEM mode as well as higher-order modes are examined.

Summary

The cross-section of the device analyzed in this
paper is shown in Fig. 1. In this shielded atripline
structure the inner conductor or strip may be elevated
above the dielectric interface by a distance h+d
and may he offset horizontally about the y-axis with
end points at ~.-~

2
and w .

1
Region 1 is assumed

to have a relative permittivity Sr and a relative

permeability Ur while the relative material para–

meters for regions 2 and 3 are both one. The width and

height of the outer conductor are respectively 2a and
2b .

The structure shown in Fig. 1 was used as a model

of the so-called “TEM cell”, a device being developed
by the National Bureau of Standards for EM susceptibi-

lity and emissions testing of electronic equipment
[1]. In some applications [2] the TEM cell is loaded

with absorbing material to reduce the Q of the higher-
order modes and thus extend the cell’s useful frequency
range. In this paper we will examine the effect that

the absorbing material (modeled by region 1) has on
the dominant quasi–TEM mode as well as higher-order

modes. The analysis is similar to that used by Mittra
and Itoh [3] in their treatment of the shielded micro-

strip line.

This problem is easily formulated by expanding
the fields in each region as a superposition of LSE

and LSM modes. Assuming propagation according to the

factor
ej ot-rz

one can derive the following coupled
integral equations in terms of the surface currents

Jx and J on the inner conductor :
z
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where P denotea that the integrals are to be inter-
preted in the principal value sense and the kernels

Gij (i,j = 1,2) are all of the form

Gij (x,x’) = (~”~;:IG$T+mjo‘ij ,m(r) C“s ‘e Sin ‘0

(2)

with
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and

$=~(x’+a).

Equation (2) ia written in a form so that the

singular parts of the kernels are easily recognized.
In order to solve the integral equations given in (1)

we move the parts containing the nonsingular kernels

to the right–hand sides of the equationa and treat

them as forcing terms. Using the theory of singular
integral equations [4] one can then invert the result-

ing int egra 1

Fi(v) =

where Tin(v)

equations and obtain

1
~ cmi(r)

[1-v2]~ m=()

(i= 1,2)

Tin(v)

(3)

is a Chebyshev polynomial of the first

kind, Cmi(r) are as yet undetermined coefficients,

=axJ -’Jz
‘1 x

‘2
=axJ - r[l + (+)2] J

x z
o

and

v = *[a+sin (~)]

with

One can see from (3) that the solutions have the
correct edge behavior, this being a well–known proper-
ty of the singular integral equation technique. The

constants Cmi(r) determine the functional behavior

of the solutions away from the edges and their deter–
mination will also lead to the secular equation from

which the propagation constant r can be determined.

A matrix equation for the constants Cmi(r) can

be found in a manner analogous to that used in [5]

whose size depends upon the number of terms that are
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kept in the expansion for the nonsingular kernels
given in (2). Since the coefficients B..~j ,mfr) are

rapidly convergent for an elevated and/or a narrow
stripline, accurate results can be obtained using only
small order matrices. In the simplest case we keep

only one term and obtain a first-order approximation
for the propagation constant valid for small strip

widths which is given simply as

r=jko (4)

If the atripline is located right on the dielectric

interface then the coefficients Aij (r) in (2) are

slightly altered and instead of (4) one obtains

[1

l+E %r
r’=jk ——————

0
1 + p-l

r

which ia identical to the result obtained by Coleman
[6]. Additional results have been obtained for larger
matrices which enable one to calculate the propagation

constant of the quasi-TEM mode more accurately as well

as to determine its dependence on strip width. In

addition the propagation constants of higher-order

modes can be obtained.
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1 Cross-section of an Elevated Shielded Stripline
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